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ABSTRACT

In the second part of this paper we complete the progrem set
forth in the first part (1). We continue the discusslon of the
kinetlc expanslons of the Liouville equation. Finally we intro-
duce and discuss the "superkinetic" expansions. The numbering of
sections continues that of the previous paper.
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SECTION 9
THE SHORT-RANGE THEORY

We consider the hierarchy (6.15) with the cholce of para-
meters (6.17), that is we assume:

hra3=€<<_1_) mq\b,} = | (9.1)
Therefore,
g_z‘}_:j_/_ H3FSm€ | g+ oo
Since the perturbation expansions:
Flaf'eef' s e*f*s... s-1  (9:3)
FS= FPe EFS L e* 4, .. s+ (9.4)

give, Just a for a weakly-coupled gas, a linear.growth with time
we choose an extension:

7CK"""?> _'.FK) fJK=5> fs“ (9.5)

wlth coordinates for the embedded domain:

2’a=é)?;=éf/',.2;)géhf).,' (9-6)
From (9.2) we f£ind accordingly, for s = 1
0
) .0 (9.7)
J
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For the two-body distribution function we have,

22
JE 2)25% _ JFY gF2e 3/
EF i L
e, J
For the three-body distribution function:

Fe
J[ an 7/3F 30=O
?a ——

J
JE”
9

..........
P

(9.10)

(9.11)

(9.12)

(9.13)

(9.14)




It will be clear later that we are carrying the approximation
to one order higher than it 1s physically meaningful to do so.
The purpose of such a calculation is to show the breakdown of the
asymptotic serles. It will be useful to keep in mind the orbit
equations:

# ¥
X;(&)=e"" "%, () (9.16)
HS¢
Y (t)=e V' (o) (9.17)
which correspond to Hamilton's equations
’ )
‘ S
: vV, =H Y, (9.19)
» The orbit equation can be written in another form if we use

¢
Xi(t)=x;0) "'f _V,"(Z) A4 (9.20)

v (¢) =V (o) + _?:t_l/‘é' (/l)d,{ (9.21)

where ‘}{ denotes integration along the orbit. Since we have,
by (9.21):

(9.22)
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substitvtion of (9.17) and (9.22) into (9.20) and (9.21) respectively
gives: 7Vﬂé

: X (€)= X, (o)+

- |
Y, te) (9.23)

A'/‘E |
INOE V(o) e _\_/‘ (o) (9.24)

Equation (9.23) constitutes the formal solution to the s-body

¥ problem.
; A, The Simple Initial Value Problem
i The definition of this problem is identical to the one
‘ adapted in the weak-coupling expansion.
(1) 2Zeroth-Order Theory
; . The one-body function 1s constant:
% o
) a
§ . _7_1:(,25)= £ (9.25)
: For the s-body function we have, from (9.11) and (9.14):
&S
KY-) 2" S
»1 F (2‘0)= / (9-26)
!
2
£
w which expressés the fact that initlally uncorrelated particles
‘j are very qulckly correlated by collisions. We adopt the notation:
1 S
Ky % ,
% SYr)=e*”? (9.27)
X S s
i with the convention O =S (C‘C*?) . We can therefore re-
3 write (9.26) as

S ,0
(w) Sy ST L by
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(11) First-Order Theory (Boltzmann's Equation)
- Substituting (9.26) into (9.8) we find

. 2L ;J_[C’_ S I° . Ao
e sle 1IELSYE

(9.29)

Therefore, in view of (9.25)
a 2 pope
=/ 5 (9.30)

!
£\ remains as a translent; schematically (where (10.6) is
already implied):

S(i#e)

Fig. 14.

This 1s Bogolubov's form of Boltzmann's equation. It can be trans-
formed into the familiar Boltzmann form (6.25) if one keeps in
mind that for purely repulsive two-body potentials there is no
binding and therefore

) 0752'(6)/,76 —» 0 (9.31)
e

Cai o |
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This asymptotic condition gives the useful identity
> S s
K~S>= I5s (9.32)

One then must perform Bogolubov's "ecylindrical" integration. The
geometry of the collision 1s shown in Figure 15.

s

gat
—
X P~ bdd
=)
Fig. 15.
f is the axis of the integration, _3_ = .\./' '!ﬁ o

Figure 15 shows the connection between the kinetic argument and
the statistical dynamical one.
From (9.12) we have, using (9.30)




\ 3{ 7/‘2‘; 3 ‘XIJ?J )
?1 - £7 + _,f' 1/3‘53*4?';3]77.{112_3 77‘5_/
é 3 po

g Z_/ /2[/3 73 43 533_7+ZZ.5/-IZ3§7T£ (9:33)

which glves

a/
Fv-’ho e d/l[,z[z,,$3 35;5] Lz. 113} (9.34)

Thls formula is Improper because 1t contalns a divergence. Its
importance will be clear shortly.

From (9.15), we find for the three-body distribution:

3 -#%2,
IE PHEY e /2,4.5,,,* Sy, S, _?,:7777f+[ e

Iz,
~~ (9.35)
3 . ¥ .o
z:e(:s;lgv¢:i¢" :} 3 3ﬁjﬂhli S‘j277j?

(111) Second-Order Theory
From (9.9) we have, with (9.34)

i LL

. JIT ;2; Z
= LS AN 5 s tasa] et SPFE

(9.36)
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where we have introduced the operator valued distribution

S (/Vs --j #’?d,( (9.37)

e
We shall also consider:

S(: z/’)f T g -

From (9‘35) if j?‘ 1s to remain bounded

-;-7-—4---'[. ;/‘/y/‘;z[zls %u* 4?.!';3,7“\Z 5}777[ (939)

The right hand side is schematized in Fig. 16.

S*(i14?)
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(1v) The "Bogolubov Problem" and the Choh-Uhlenbeck Formula

The right hand slide of (9.39) 1s 1dentlcal to the A2 of
Choh and Uhlenbeck. The Choh-Uhlenbeck formula results, according
to them, by the two followling steps. Call the curly bracket in
(9.29), then

L3N - Jd-i&d!z IIIZ'ﬂZAdA A

- ¥ (9.40)
[Josnds, | (x) " A
- [

where the equatlon of motion ol €xp (-# ‘/1) has been used.
By spatlal homogeneity the ?fz contributlon is filrst set equal
to zero. According to Choh-Uhlenbeck then the upper 1limit of the
integration does not contribute. Therefore,

L3N = -J‘dzé;d&/,_ﬂ (9.41)

!

/
. th f i oCo —— 0
It 1s c¢lear that since s a transient, i.e 072; 7

/
one can choose i? (f;: q) S0 as to insure
!
,_C_._—> ] (9.42)
e

This cholce is different Ifrom that of the simple initial value
problem. The cholice (9.42) generalized to

K

sl O K=o (9.43)
£ % =»eo

and supplemented by

‘”SC Sk
. e a;j;:j> 0 (9.44)
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will be called the "Bogolubov problem". This is closely analogous
to the "Enskog problem" of the transition to fluild dynamic (see
Secticn 15).

Referring back to the baslic equations of the short-range
theory (9.7) to (9.15) we readily see that Bogolubov's problem
leads to the following equations. In zeroth order:

tiz,)-f (9.45)

fSO(?Z)Z:—"’ Ssﬁfo

(9.46)
In first order:
[]
;—2-1;--‘- /-Sfdfo (9.47)
which agrees with (9.30) and
£'~ o
L To

The Boltzmann equation therefore follows. In addition we have,
for the two-body function (9.34). Furthermore, from (9.36) we
now conclude

9 ° */ s 3 3 ro
3;{""456#){—5,;[435/3*43‘23]'*[25} 77--7-[ (9.48)
The Choh-Uhlenbeck theory consists 1n the restriction:

Jf "?-{‘ 2o ) 0ps o 3 no
92;+€’?2; +é'07—;:[:€z5ff+6 Zg*/(_%@s%,éés]*ésa B

s Bl SIP LT S 5,005, )L s

(9.49)
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(v) Conclusion of the Second-Order Theory

We included the discussion of Section (iv) in the second-
order theory In view of the speclal Interest 1t holds and the
cruclal role 1t plays 1n a deeper insight 1nto the kinetlc theory.

We now complete the second-order theory. The H-theorem for
the Boltzmann equation (9.30) insures that

f(f,)g::’ /] (9.50)

where M 1s the Maxwelllan distribution of thermodynamlc

equilibrium with density Z » mean flow veloclty ¢ and tempera-
ture T:

(v-4)*
QLeT
ﬁ’ - £ c {5 (9.51)
ra¥>
If we now analyze (9.39) for large values of 2’; s We have:

52{ +;’£_—_ZS"/¢’/;/2)/(' [/3 )3 3 S, +Z j})ﬁ'M 0 (9.52)

We can therefore choose

S
72

=0 (9.53)

and

;f ’Z-{*//)[( /3 /3 23 aaj"'Z S 777[ (9.54)

= S =
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which can be rewritten as an explicit quadrature:

__‘P,(Z,')=ZI‘Z7/9/('§; 43‘5/:3"‘Z 23]"'[ Sg/dXﬁf(ﬂ) (9.55)

o
where the A dependence of if must be found from the Boltz-
mann equation (9. 30). Since {w is 2; independent, we can set:

IF°
"———'s (9'56)
7z = ©°

This is the first example of closure. This concept will be
further discussed in Section 13.

The physical meaning of the choice (9.53) and (9.54) is the
following. For a spatially homogeneous gas there are basically
only two stages in the evolution towards equilibrium.

In the first or pre-kinetic stage f5(5>/) becomes
synchronized to E} while Ei itself does not change. This
"freezing" of the ccrrelations, which is due to the energy mo-
mentum balance in the collisions, occurs on the time scale 25
whose unit 1s nv/y i.e. the duration of one collision.
The mathematical expression of this synchronization is given by
the formulae (9.28) and (9.25).

In the second stage or kinetic stage, the one-body function
suffices to characlerize the evolution ot the system in time.

In fact the one-body function satisfies an equation (the Boltz-
mann equation (9.30)) which determines it independently of any
ynowledge of the two, three-body distributions. The time scale

for the kinetic stage is 2; whose unit is
Yo L. Y I A
e e (9.57)
5
N
N - 12 -
3
%
i

it i
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where )~ ls the mean free path. Tt 1ls clear therefore that the
unit of the 2: scale 1s the time between two successive col-
lisions. Boltzmann has shown that a gas that satisfles hils
kinetlc equation tends of necessity to equilibrium:

.._--ff Zog,f dy < (9.58)

Adz Az,

with the equal sign Implying {\ ﬁ4 . On this scale there-
fore the already synchronized E_ functions will reach their
equllibrium values.

It 1s therefore to be expected that after the asymptotic
limit has been reached no further evolution can occur in the gas.
(This of course does not prevent fluctuations). The "closure"
condition (9.53) expresses thls basic fact. The method of ex-
tension (introduced in Section 3) 1s responsible for our ability
to "pinch off" the agymptotic series at the place where it would
be damaging. The fact that Ei’ as glven by (9.55), 1s improper
simply expresses the breakdown of the asymptotic expansion.

We now turn to the two-body function in second order. From

(9.13)
szz* Zﬁ-zzN__t;.f%_dsa ;fa/asoé sz iSo
072, 7 ;Z, ?"—' + Lyl (9.59)
0 4 14 2:_
where asoe means asymptotic in 2, . But we have
/72{,450
J1 . 2 s* ¥ =0 (3.60)

2k oz

2




o .
..........................

by (9.56). Also from (9.34):

9,40 ©
j{»}« { [L':s '3 2323.] +L,S f

o
' {Lu/ S oSt LaySy f 71

(9.61)

Finally, from (9.35)

3 as ©
LE"

‘L;{‘S3[/__,¢S,¢+ LSy Seftd 527# A

whence, substituting (9.60), (9.61), and (9.62) into (9.59):

~§ (/_ {S’[ Ve 5+/S]+15/)
(
+%§z Z2/35/3 *435;3]“45})/445,/ iy Sy *Z”‘S;"}) 7%1-’[0

which represents the effect of four-body collisions on the two-
body distribution function.

(iv) Third-Order Theory

From (9 10) we have

Jf° J9, H

.——--’-_—

92’ JZ .74 .72'2’

(5»[ 1513 " ][¢5«* AP «53«,/_7 . e
N '21"'53[2/45/‘/ Zat/szy ¢ 139/53(,/]7"1 507‘(’

9.63)

........
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To have a well-behaved ia we require

f 2£' ﬁf _ L4
92" iz 9? = rhs of (9.64) (9.65)

We can now require

M

77, (9.66)
and also 1

J_'Ei as Y

92; (9.67)

which shows the consistency of the closure conditions.

B. The Complete Inltlal Value Problem

We now allow arbitrary initial correlations to be present in
the gas. Frem (9.7), again

fir)=f (9.68)

from (9.11),

Fity )=€--# 2‘7[1[ re 2;3"(0)
T pomo (9-69)
5 S[E1+ g°to)]
From (9.14), 3 2, 32’
E¥(v)=e” "t re 59%) s
(9.70)

WS




We obtaln therefore in first-order

27 *j'g= Le_#zgﬁf +J ()] (9.71)

The necessary and sufficient condition for the validity of
Boltzmann's equation is accordingly (7> o)

-H* 4
Le

"g9'le) —‘/7-‘7" (9.72)
[}
When (9.72) 1s fulfilled, the behavior of _f\ is transient as
for the simple initial value problem, but of course considerably
more complex.
For the two-body function we have, from (9.12):

IFY 2/ -7/‘2‘
S5 SHEL "Z;ff +9%) ]+
+[ze [777{+Z{j(a)+6/0ﬂz- ‘,,_;)Tp-fti ()] + (9.73)

+H, ST+ SE g () + K @]

whence
B ;:{.g;;’—z[ﬁc:_g70)];45”[75’12553%)+5°zagf o

Substitution of (9.74) into:

H JF Jf" J
JZ; .?2 % ~AS& 5 “ﬁ["ﬂ@]

v L5} +£_f_§°/o)+5@)]j)

(9.75)

..........
.............................
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A kinetic condition can be extracted from this equation only if

L -%2“2 *3L 3% ~ = :
2. ,S tgb Z, 2,'"7 (7>0) (9:79)

and

-#,7 3,
lee /2 115*5_(0)}-'#;; (7,0)(9.77)

[}

These conditlons are of interest because they are required by
closure.

BT
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SECTION 10
THE ZaNDAU EXPANSION

A. The Expansion

In order to establigh tre relatlon between the short range
theory and the weak coupling =xpznsion, we shall have to conslder
the dillute, weakly couplzd zas. It iz clear from Flg. 10 that
if we expand the short range results in powers of

ﬁo)

PN

am

we wWlll not obtain the formulae for a weakly coupled gas but
rather those for a dilute weakly coupled gas. Also, if we expand
the weak coupling formulas 1in the dilution parameter (Hr}%)

we shall find a dllute we2akly coupled regime. The expansion of
the short range theory in powers of

&,
2
MV
Will be called the Iandau expansione.
The basic formulz thet we shall employ is (2.12) applied to

HaX -1
_(K/-éf)t . K¢ ée-/t'éf [ + %A _Z—e.‘m] AA +

-rff[;o[e-m]/‘/em mjﬂ”* edohy
+O(£3)

(1) Zeroth order trecry. From (9.25) and (9.26) we find

£a(z;) =£c (10.2)
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(10.3)

i«
ks,

e >
2/ ‘bp"’o’f:':'!";‘y‘:n

= 77?'_[0#65*(//5)[5775!6

(11) First-Order Theory.

We rewrite the Boltzmann equation (9.30) exploiting the fact
that only the two-body correlation rather than the complete two-
body function contributes to the kinetic equation. Thus, for a
¥a spatially homogeneous gas:

o] LEYZZ)=Z_(EZ:I+2)= [j (10.4)
by We have from (9.26):

1, _EZO(Z‘;)':_E-#%/?[
(10.5)
-£1+ 9%%)

b,

(10.6)




where we have used
o
%2_-1_[_{0:-' O (10.7)

For the Boltzmann equation (9 30) we have therefore

z;"/#‘)fff
-zf*( #)IFE+ 0(€)

The result 1s the small momentum transfer equation of Landau.
This result also follows from (10.3).

The Landau expansion for the function Efi 1s most readily
obtained from the equation (9.12) that it satisfies. Thus, we
can write

z) 2
.__--j;F f-ka;’a/" EI‘;;— s

€ fe L LA S TR, = g

(10.8)

We now let, simply

F” /'+£F+EF+... (10.10)
And, substituting into (10.9):
07; 7(//" o (10.11)
22’
This gives
/L"’. o (10.12)

- 20 -
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to lowest order.
The first order equation is

IEL KT / [, 502,y STeks)
1""[& i (/-z:a. -Z:.v In)}ﬂ-’[ (10.13)
2-: [Lza(j ])z; * Laa (: I):s,/ﬂl(

which gives:

F'~ *(‘ %)[/33/ I 74 5/1/;)1;3]/// (10.14)

which corresponds to the secund term of (7.87). The first term
1s the second Landau approximation for F2O
To second order we find:

24‘5-: 8 %‘ZZ"]L/C /:
2 B

-t ? fZ; P =\ * o 3 p0
"€ 2;J X1 dxﬁ,3(5*1/23+L23(5 ‘ /JWlC )
__[ j ~K’3)j +st/\1 -k A I 1d 'y (10.15)

Lzsf f K/‘"I e”"‘I ' fre

> 3 1.3 o
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where spatial homogenelty has been used repeatedly. It 1s easy

. to see that the first term on the right hand side of (10.15)
corresponds to (7.96), the second term to (7.97) and the third
to (7.98). Therefore, the quantity F- obtained from (10.15) is
divergent. We have thus established the connection between the
breakdown of our asymptotic analysis in the short range and in
the weak coupling expansions.

Now, we want to give a more detailed mathematical description
of our divergence. This 1s done in the next section. This
gection will be concluded by discussing rapidly but completely the
dllute, weakly coupled gas directly from the Liouville equation.

B. Dilute, Weakly Coupled Gas
From the hierarchy (6.15) we obtain with the choice of
parameters (6:19)
L eLF*
3— = (10.16)

e 2
(10.17)
_3 3,2 % d
%f*’f’%]f*éZBE (10.18)
¥ £
AL *K’.’f 6-[*/: +62Z (10.19)

,?e
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We consider the Rogolubov problem

K‘;’a K #0

(1) Zeroth-Order Theory.
We readily obtain

fo(zé‘) ='__7po (10.21)

(10.20)

and
So S 0
_/_L_ (2;) =77f (10.22)

(11) First-Order Theory.
We have

£°(7)=£"

(10.23)

/ [
£ (Z)‘f =0 (10.24)

Also, for the s-body distribution:

2; 'S 0
fﬂ(??)‘fe"‘(’?dﬂ I5TH
*/. sSpt

(10.25)

e

&2 ‘1";".-: '''''''''''''''''''

U R e K . LA e
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as LS TR AR —dada o a et el ma s o
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(111) Second-Order Theory,
We find, for the one-body distribution

0 o
f (Z}_)‘-' _‘E (10,26)

and
2 2
f(?o)"f =0 (10.27)

For the s-body distribution, we find:

S A s -x32 S
ESZ(T',)=€ X zéjek AIS l-k—-fe I{M £° (10,28)
~ (5*1)(3*1) 7§’
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whilch Improves (10.25) by repeating the interaction process.
(1v) Third-Order Theory.
We find, for the single-body distribution,

é&( Z-(t;-*jr)

n.-:—z
;3

which corresponds to (7.70) and

Jl[ﬁ"“L/ _X/)).Z 7[7[2: = (10.30)

(10.29)

which corresponds to (7.73). Similarly, for the two-body dis-
tribution

E2= (3 TNSTYS)£F°+
R 5:[[,3 (5¥I)23 . L;_3 (I*Q]f;_cza (10.31)

The second term on the right hand side of (10.31) corresponds to

(7.92). Clearly the correspondence cannot be term by term to all
orders.

For the three-body function weshave:
Es (S (150 £
r 39L, (37T L(371), +
* /-.14(5“[)/»4 * Lﬂ (;%[351 s o3

e L, (57T) ¢ Ly (50 T), T




(v) Fourth-Order Theory.

We have, for the kinetic condition:
Z o L (IR

while the two-body distribution satisfies

07/_.3}‘ * 24 23 . 07;2367;21 JF” 9/__34
LR, ) 2L I JET
,72; - L1 *LE I, 4 Jr Iy
but szf ] Q/:.z-a.
2z 91,
and
JF 3/ /_e-fazz ZZ (57 Z (S‘x 3 .6
a?z,“'= ZE:;—_—-JT /3 43*'23 J{ZQJZZEfﬁ
3
Also,

L[ DG 4 D)t

Therefore,
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(10.34)

(10.35)

(10.36)

(10.37)
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Fe SIS IO -
+(31542Ll;33(3r*2[%31‘ 23(Gr*322i]'ﬁ~i: i
L L (STP(ET) Tpe-
(5D L3 D+ L, (57), JT£ - (10:38)

L,(5°1), (5= L (5T, (STLJHE

It is immediately clear that the very singular term in which the
K“S" product appears does not cancel. In the next section,
this persistent difficulty will become more transparent.

(vi) Fifth-Order Theory.

We can readily write the kinetic condition:

2L SIS DTS PEE
T e AL, ()L, a_%];f;
F L (D3 SR £ 16,399
(5°0) 3,,(5%0), + 1, (577, J£°-
L2,4(5T), (57, # £, (PTL(ST)]HED

This formal result has clearly surpassed the limits of validity
of our asymptotic expansion. In particular, one readily recognizes
in the fourth term on the right hand side the contribution

- 26 -
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SECTION 11
THE CONFIGURATION SPACE

In this section we first discuss a decomposition of the
configuration space of the four distribution functions F1 to
F4 in terms of the 1nteraction sphere of each of the particles.
We then show how this decomposition classifies the kinematic
degeneracles in the n-body collisions. This analysis will make
clear that we have "over corrected" for secularities in the re-
gion of configuration space where our asymptotic expansion fails.

It 1s a pleasure to acknowledge the collaboration of Prof.

W. Hayes for the work of this section.

A. Decomposition of the Confilguration Space

We remind the reader that we have confined ourselves to
spatially homogeneous gases.

(1) The one-body distribution function is completely in-
dependent of position. Therefore, the one-body configuration
space Cl, is one point.

(11) The two-body configuration space C

2

I.’flzl’o (11.1)

We decompose 02 as follows

2z

C,: I_)_<n_[>\r'° (11.2)

and
2
C_: I_’_‘_,,_lf e (11.3)

' Ci is the "outer" region, C? the "inner".
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(111) The three-body confirmation space, C3, is a non-
eucllidean three-dimensional manifold with a rather intricate
topology. It decomposes into 8 regions:

5. |>

corresponding to configurations in which all three bodies are out-
side each other's interaction sphere,

ot xal<ve, [%51 20, 1X5] 5y
Ci.‘ )l,;l’r") Kplen, [Xa) 2w, (11.5)
C«:‘ [X.1> %, f_)_<,3I>C) [ X,5]< %o
for which there is a pair interaction,
O Cilrden, %4040, 1xlev
CZ.’ /ﬁlzi‘n) fi‘-na')‘fo, |X25) < v (11.6)

(‘,;t' X, 1> %, x50, 1X,51<%

Each of these regions corresponds to configurations in which two
pairs are within each other's interaction spheres. Finally,

3
Cot I.X,,_l‘ro) )_>_<‘3\<\1,) X, 1<% (11.7)

for configurations in which all three pairs are interacting.
This decomposltion 1s difficult to visualize except for one-
dimensional gases. We treat therefore this case in detail. For

. the purpose of analyzing the divergence in F2 due to three-body

1 - 29 -
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collisions, two Integrals are of relevance
= _f’
A= LT
(11.8)

A= L, F

b

the L operators providing a cut off outside certain strips.
Trus, for the L13 integral we conslder:
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R r - e & T - . T W, T T MR YL T T T Tk B
wiﬁﬁtxixgy:rtzxxrzxxﬁﬁﬁin.ﬂnﬁ.F.*.r:fi‘s‘:T: A AR R 3

The Cg are disconnected regions Whence the rather intricate

i . topology. Clearly only the hatched horizontal strip contributes
- For the L23 integral, we consider instead:
E Xag
X
; / e
ks 3 / Loz /ntegral

NN AN N

+ e

3 S
TR ot

75X

S

A

’

¥

3 Fig. 19.

3,

ji Clearly only the horizontal hatched strip contributes to _/Lz
j The inner squares of the two diagrams are particularly im-
ol

i portant since they alone contribute to the rate of change of the
4 7 one-body distribution, i.e. one has two successive cut-offs:

3|
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LAL, =LAl +L AL, (11.9)

If one did not correct the time derivative thils contribution
would lead to a triple product integral for the correction to
Boltzmann's equation.

(1v) The four-body configuration space can be decomposed
similarly. The system has six degrees of freedom which are con-
venlently chosen as

C"ﬁ ’X ')'&,3’) L’SH,) ’xz,g,} IK;.//, /.)_<3¢/ (11.10)

- 13

That 1s, all six distances. The corresponding sixty-four regions
are readlly defined.

We have:

1 reglon with no pairs interacting

6 regions with one pair interacting

15 reglons with two pailrs interacting

20 regions wlth three palrs Interacting

15 regions with four pairs interacting

6 regions with five pailrs interacting

1 reglon with six pairs interacting
The four-body distribution 1s the highest for which it is possibue
to decompose the conflguration space by means of the relative
distances. The following types of Integrals are those of relevance:

3
J_.—.[LM+LZ¥+L3¢]_E¢ (11.11)
corresponding to Qfg/; ¢

.........
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LALE?
- (L/3+[-23)'2(L/t/+[1¢*[3,¢)£,‘ (11.12)

corresponding to o/ /07{
I L) L AL E )
LA (z.,, +La N Ly #Lon o) F (11.13)

corresponding to ;F/;é .

B. Kinematical Degeneracles

The decomposition of the configuration space is particularly
useful because 1t allows for a complete classification of the n-
body collisions in which only M{M<n) of the bodies
participate. In fact, the 7?“5 operator undergoes definite
contractions in the different reglons of configuration space.

(1) Two-Body Degeneracies.

From (11.2) and (11.3) we have:

C: ‘ 7/2‘—’ 7«& (11.14)

and

¢t: Hi— x-I°

Schematically,

(11.15)
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Only the configurations belonging to C_ contribute to the col-
lision integral.

(11) Three-Body Degeneracies.
Referring to equations (11.4) to (11.7) we have

C,‘s: %/3"-",(3 (11.16)
in the region where no palrs interact. Also,

el Y —s H, + &,

333 ! P —> Hyt X

(11.17)
C: : AH: — 312_3 i )(//
in the regions where only one pair interacts. Similarly,
¢l AP R-I.-I,
Cf: #: —> x°-1,-1, (11.18)

Ci-‘ 2 — K°-1I, Lo

in the reglons where two palrs interact. Finally in the region
where all three pairs interact

C:f f/g——"? 7?;"[/;_'1—).3_'[3/ (11.19)

Schematically:

e
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The reduction of the Hamiltonlan entalls the existence of
particular constants of the motion corresponding to the reduced
number of bodies actually colliding. We turn now to a discussion

of the effect of three-body collisions on the two-body function (l;).
We have, from (9.33)

ifw,‘. Z/lF”,

(2]

PrL ot T

N

_#3;; oy po A% , (11.20)
=[2_e. // - A S *Zu&,]_’[:rf

e 73 13

The second term on the right hand side of (11.20) is the

_35_
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correction to the time derivative., That 1s, 1t equals

IEY ) 22

and coincides asymptotically in 2; with the quantity

SFY[FT 2% 7 £
Serer A(SIF)dE

of Bogolubov'!s synchronized technique. It represents de=-

generate three-body collisions which are "successive" two-body
interactions. This contribution to F21 grows linearly in 2;

by construction. The time derivative has been in fact corrected
preclsely to absorb the growing contributlions of the direct per-
turbation expansion. The linear growth of this term 1s in fact
very readily proved directly. We have, rewriting slightly (11.20):

(-]

o _#32; i ' hOp o (11.21)
3(2;>"€ 6722 (f_ )

whence

2 2, 2 o
F = B[ PN

—e_#zzz 2; -2-—[:{0(\/ )fa(v )] (11.22)
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2/
Therefore, the contributlon to f J) éf from the second
term on the right hand side is

SEY 5 -7 s [E(V,) £(%) (2.2

where, as in Section (9) the V, denote the asymptotic velocities
in the two-body collision.

In order that (11.20) give an ‘:/:A/ that can be con-
siderad C?(Ei) with respect to FQO the "successive' two-body
collislions must cancel against the direct three-body contribution
L, E‘o . The divergence discussed before in the short-
range theory as well as 1n the weak coupling and dilute weak
coupling expansions correspond to the fact that the desired
cancellation in fact fails.

This important result 1s obtained by referring to formulae
(11.16) to (11.19) for the reduction of the three-body Hamiltonilan.
We rewrite (11.20) in two different regions of ce.

X, [>R ¥

27 o,

2 +XE 12'3 *Z"-’e W:/ (11.24)
3,0

‘_Z6é3£;34—z;35%3:7zzf. ~ CD

2

The cancellation of the secularity ls therefore complete in the

"outer arms". However, in the "inner" region C?
2/
< v AF
I?.(/zl ° + 7 F”
2,

(11.25)

=[ Ly( C; Z C’;) t (€ UC:)] éﬂ?ﬁ_” y {J} 771[
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there 1s clearly no cancellation. We used the notation af 0(’.}’
to denote the union of CE and Cg.

There is an intermediate region, r, < ,5-,-;“'2*’0
in which the cancellatlon also faills to be complete.

The physical reason for the divergent contribution to the
three-body collisions corresponds to the fact that successive
two-body collisions have a very large (three-body) correlation
length, of the order of A (the mean free path), and give rise
therefore to very persistent (in fact secular) contributions. It
1s clear however that the entire contribution from two-body col-
lisions to the relaxation mechanism of the gas toward the
equilibrium state 1s taken into account already (and completely)
by the Boltzmann collision integral. If one 1s not wise enough

not to count things twice, one: is left with a very big result!

- =%
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SLCTION 12
DEBYE EXPANSION

It 1s convenlent to transform the hierarchy (6.15):

s g\, _sH
;%’5-+ 74”/—":(}»;{) ';;;;: L, F (12.1)

into the equations for the correlation functions. We will be

concerned with both the two-body correlation g and the three-

body correlation h. Substituting the cluster expansion (8.2),
(8.3), (8.4) into (12.1) we find after some calculation:
Py

o/F Y L1 ¢o

oLt (12.2)

a? l2 /
LAy rrEs

sy _% (12.3)
+(nr; ‘(“‘Vi)ﬁm /7‘3234— LeEgarL, ;‘:235 18

and

2,
-2‘:',' + HE - m v_;>[Lz(Ejzs +Ej,3) +Jn-3(6323+63rz->+ 1;3(,371; [:33!?)] k

%,
*-(hrj) (MV—E-); Z"’ j‘nja/' jsjﬁ) + 2 (§n§3¢*54 923) * (12.4)

\, +l‘3¢(g/3ﬁz¢+9i~sza)* Lyl /‘w/*%y by rloyhs hyyt
* B L3 kns«#g
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where K is the four-body correlation function. If we now in-
troduce the choilce (6.18) for the basic parameters,

&,

3 _ L
= E Ny . = (12.5)
v, / €
and introduce the extension coordinates (7.29) together with

fr=1{"
3k=?jk - (12.6)
k.<7===#’ A K

we find immediately that the equatlions do not decouple at all in
lowest order. We introduce now the simplifying assumptions

_3;0(6)/ .}PO(G’), K-0(e?) (12.7)

This cholce 1s in the spirit of the simple initial value problem.
We find immedlately for the one-body distribution:

JE°
3‘2:; =0 (12.8)

¢ (12.9)
-]
L2 e
,93;_ _j (12.10)
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The two-body correlation satisfies:
/

\9 / 2r0p0 e , o
-ji—»t-?(’j?:l_.{f +L/3£_CZ23+L23£2_3:3 (12.11)
and
J9* . Ire e /
2 g TP /)';‘Z I,
© ’ 2; —
f—L,sfojzg +L&3ft’2',3 + L/3£/0_233 . (12.12)

+ Lan:_ﬂl: +(/.,3 +L23>A::.3

The three-body correlation satisfies:

2 o 4 0 G 1 ¢ ° y
S+ Lyt g ) E 3 ) T E g )

a3 5u 3 LGS B L o5 g0 )+ 2.13)
i L"‘lp'ab:ar F L*"‘l(zoi‘,zsf Lk, b

=3 = ¢

From (12.8), we have immediately:

_{6(2;)-:.100 (12.14)

The equation (12.11) for g_l 1s an integrodifferential
equation in which all the time dependence 1s in the quantity 51_.1
We can rewrite it as:

29’

R T
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where

F‘[f7i'=[/3£ij;3+[z3£:j,,3 (12.16)

is a linear operator on §i. The solution of (12.15) is

2; 2 éf s
i'f%)=e{x ﬂ)f?'zw KRy (2D

(4

We shall be concerned with the simple initial value problem
and therefore only the second term is of interest. We then have

j/?/;—(f’z-/'z)}dzjzfi/“’ (12.18)

[
Before we proceed, we shall make the ff dependence of the

propagator more explicit. For this purpose, we consider now the
homogeneous equation:

JG 2 .,
5,: 7"(7( "'/7)6 =0 (12.19)

whose solution 1s
Jx-r72% '.D?;
5(2;)-'-'-6 xry Gé)‘ € G(O) (12.20)

The Debye operator 1t7 can be factorized as a product (14)
/& =L

(12.21)
nD/z =4U/~U




............

corresponding to the product solutions of (12.19):

G/:. = G/ @a.

EJ'G./.' =K3'6j "ZJ'_; _7_[-; G’ (12.22)
The GJ satisfy in fact:
"OZG s D‘(;J':O (12.23)

or, making explicit the 7? and operators:

-3'—%-@/ +V -/;XJ‘_/J V'/'[f‘”{i =0 (12.24)

Taking the Laplace transform with respect to 2; and Fourler
transform with respect to éj

ey T TG e

from which
G (o)
/”*‘ Ky (12.26)

y,[ Ky Uk 4_4 5 +

/ /r#tv




Integrating over j}' we obtain an algebraic equation for

fd_\{,é

fdl'l'J@.{o{ .dyz'- YVJ!J""ZKZ U‘dy' Ay, ¥ (12.27)
1 /OH'?'KJ /o+¢‘_?’-_g)' / 3

whence

[Qf@d%‘
fd!3X3= 7"“'!3'51' _

1+ |dy, yvs;f;i;;t‘ﬁj 4
- F+l- y3 '_’{J‘

(12.28)

We substitute (12.28) into (12.26):

Gjte)

= i,

: < f@“}‘{f’-‘ (12.29)
Wi kU

/9+L'.1//"_A_/a' ]*4/‘5{! YV.? _7?"'4'/_?'0

We have then
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where, as usual, the contour C 1s parallel to the imaginary
axis and to the right of the origiln. The somewhat intricate P
dependence of 3’ makes 1t difficult tc see explicitly the A
dependence of Gae C

We now insert (12.1T) into (12.9):

25 [ )T
v 5*2‘%‘)1?}”

“n—

(12.31)

where we have introduced the "dielectric constant" operator ég by

~ € SYi[prr ) =5Un) 12.32)

The form (12.31) of the kinetic equation suggests the comnection
with the Landau equation. This is establiched by a "polarization
expansion” in powers of ,/71 which 1s analogous to the "momentum
transfer' expansion in powers of .

To obtair the next approximation in the theory, we must
solve the equation (12.13) for QE. It 18 clear first of all that

there are product solutinns of the {ype (12.23). We can write

2; = 2 - . »

So- TR (1 Bl (57D, -
2. (12.33)

+.2: 3[(5 YZ N (3 *]);z.} ’L‘Z;B [(; ,‘7)/3’ +(>, ’7)’2_]}77_;
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{50, (5, +(5°), (513, ]
f L3055, (570 (5705 ]
g5, (571, +(5°T), (571), ]fyﬁp

where the j;' operators denote here
* _ *(' .,/
5{/ =T f[/ﬂJ 0]) (12.39)
and where

/72;3"[,9{,042 +/ 7[641*[ goé:;‘/ (12.35)

T T2 Zpzy Ty

We can therefore write:

_A_ 32? 39(31/.2[?3%3,‘-(5'*_‘]23]1-_[;31?5*‘0& 4_(3«1-)/}7"-
+1,, [(5’*])3+/S*I),l]327)i£c+
2520 L5 T)(3*D),, +(377), (571),, ] + (12.36)
FLaJer0) (300, + (57D)y (37T | +
% # o
t LSI/[(S*I),:: (5 Y)z'; ’L(S ])ul— (3 7);;3]} 7T£
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From (12.12) we find for the second order two-body cor-
relation function,

5435: (K3-/%4 ‘Z
E(IS*) L’-£ -512 ,,_[,3(59.7) +[ [SYL]W_{ +
+L35*3/"J/‘2[(37 5+(5‘XI)/3]*'I [(5‘]23 /5"‘_[),2_ +

C I [(571) + (540) T £ + o
Ly 30 D (5D (50, (5%, T

T, CDATLE DL onsn ot

We recognlze lmmediately in the second term on the right hand
side of (12.38) the very singular contribution with two coincident
Formally we have now, using (12.10):

- L(3%).(541) £+
—Ls {{ (59). [1,,(5T)y #Las (57 )5 [
+LLKX3[L‘B5#I23+(S‘*I)/3] I’fpp‘])zf"/:*]u-* (12.39)
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Thic equation represents the correction to the kinetic equa-
tion of Bogolubov and Lenard. We have separated the right hand
slde into two-, three-, and four-body contributions. The
presence of thils latter in second-order emphasizes the great
differente that exlsts between the Debye expansion and either the
short ra.ge or the weak coupling expansions. We have
schematically:
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For the Debye expansion, 1t 1s necessary to distingulsh two
types of complete initial value problems: the small correlation
theory and the large correlation theory. The conditlons for the
former problem are of the somewhat intricate type

2
(X7 )
Le j(O) A 5/77 (12.40)

The latter problem is even more difficult. The gzeroth-order
nierarchy can be written as:

J ¥
7(’ =Z? 12.41
o rX =L (12.51)

where 15 1s a vector with components 'Fk = F'“ and the X
and gg operators are approprlate matrices. The solution of
(12.41) 1is

.. }p(zv ___e‘(Z'“.é)?; f(o)

The kinetlcity conditlions for thils problem are therefore of the
type

/
;(2:’) ’2? 7777 (12.42)

Our argument for the breakdown of the kinetlc expansion is now

complete. We have found exactly the same divergent contribution
in all four the regimes of ir+erest.
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SECTION 13

A GLOBAL THEEORY

In this section we shall be coner . 4 with the Liouville
equation 1itsclf. We write, for a spalially homogeneous gas

F
3277,4'+Z% /ﬁv”)IJF @ (13.1)

and

(13.2)

ﬁ:(hYB)(¢ LnF

N

where F 1s identical to F and

. _ dx.
L =L E&2qy. .. . dXv Vs (13.3)

We wan% now to consider (13.1) and (13.2) as directly coupled,
i.e. Wwe bypass the BBGKY hierarchy. We use the same extension
technique that we have used so far.

A. Wealk Ccupling Theory (1%)
Our perturbation equations for the N-body distribution function

;; + #F -0 (13.4)
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and for the one-body distribution function

inﬂ

3‘2\;:0 (13.6)
// JE° £
72 -72; =lnt (13.7)
?[ .?f’ Of° -
2z "oz " o0g 2 (13.8)

We confine ourselves to the simple initial value problem.
The zeroth-order eauations yleld immediately:

)= £° (13.9)
and
o id 0
Flz)=7f (13.10)

The first-order equations are also readily obtained by noting
that:

v o
L/-, Wf:c (13.11)

because of the spatial homogeneity of the gas. We have therefore:

_7_£’°(2;)= f" (13.12)

and

L2 o (13.13)
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Also, from (13.5)
/_e*K/Zz M/)O ) N Ao
f'(Zg)=7‘-Zﬁ— ’?\,":5 ("()IW.-[ (13.14)

Surstituting this result into the second-order equation (13.8)

JF° *4'7(/ Iﬁ(fa
2., 5

LS T AT ) 9

.= =

It is easy to verify, by means of a straightforward calculation
that the coefficient of ( Nyrd) 15 in fact identically
zero. This result establishes the Landau equation as a direct
consequence of the Liouville equation. A similar calculation
establishes the next kinetic term. The following order diverges.

3. Short Range Expansion

We have agaln 9 _F°

e v,
9% (13.16)

For F° we obtain, for the simple initial value problem:

o ~Hi, W
F(Z)=e 77-1fo (13.17)

From (13.2):

9£/ 9.{’0; _yz; //7[’0,\, ¢
Tt S Lee T ~/,STt

(13.18)
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whence

f LS;F thrg)

(13.19)

J

Since the last term on the right hand side is negligible to this
order of approxlimation, (13.19) establishes the Boltzmann equation
directly from the Liouvllle equation.

We note that from (13.1)

QF /_—1 QF

7z 97 SRR

Since the left hand side is Liouville's equation, we are now cor-
recting our very first principles! From (13.17) it 1s clear that

F'~ 2 const (13.21)

The arguments of the constant are the asymptotic values of the
momentum in an N-body collislon. We have clearly gone beyond
the 1imlt of validity of our asymptotic expansion.

C. Master Equations
We introduce

¢E‘IF d—’-" “{/5_7- ...6_{;5_'4 (13.22)
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